organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,2-Bis[2-*n*-butyl-5-(2,2-dicyanovinyl)-3thienyl]-3,3,4,4,5,5-hexafluorocyclopent-1-ene: a new photochromic diarylethene compound

Chun-Hong Zheng,^{a,b} Shou-Zhi Pu,^{a,b}* Zhang-Gao Le,^a Ming-Biao Luo^a and De-Chao Huang^a

^aCollege of Biology, Chemistry and Materials Science, East China Institute of Technology, Fuzhou 344000, People's Republic of China, and ^bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: pushouzhi@tsinghua.org.cn

Received 6 April 2007; accepted 16 April 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.109; data-to-parameter ratio = 14.7.

In the title compound, $C_{29}H_{22}F_6N_4S_2$, a new symmetric photochromic dithienylethene, the distance between the two reactive C atoms in the molecule is 3.475 (3) Å. The dihedral angles between the central cyclopentene ring and the two thiophene rings are 57.9 (1) and 51.2 (1)°. The molecule has no imposed crystallographic symmetry.

Related literature

For related literature, see: Irie (2000); Pu *et al.* (2003); Pu, Liu, Chen & Xu (2005); Pu, Yang, Wang & Xu (2005); Ramamurthy & Venkatesan (1987); Tian & Yang (2004); Shibata *et al.* (2002); Yamaguchi & Irie (2006).

a = 20.8617 (17) Å

b = 8.9036 (7) Å

c = 31.734 (3) Å

Experimental

Crystal data $C_{29}H_{22}F_6N_4S_2$ $M_r = 604.63$

Monoclinic, C2/c

$\beta = 91.801 \ (10)^{\circ}$
$V = 5891.4 (8) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX2 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.907, T_{\rm max} = 0.960$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 372 parameters $wR(F^2) = 0.109$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.39$ e Å⁻³5473 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

 $\mu = 0.24 \text{ mm}^{-1}$ T = 291 (2) K

 $R_{\rm int} = 0.036$

 $0.41 \times 0.25 \times 0.17 \text{ mm}$

21870 measured reflections

5473 independent reflections 3854 reflections with $I > 2\sigma(I)$

Table 1		
Selected geometric parameters ((Å,	°).

C13-C17	1.342 (3)	C15-C16	1.527 (3)
C13-C14	1.501 (3)	C16-C17	1.501 (3)
C14-C15	1.530 (3)		
C1-C5-C6-C7	-176.5(3)	C3-C13-C17-C19	4.9 (4)
C1-C5-C6-C8	2.9 (4)	C14-C13-C17-C16	2.9 (3)
C3-C4-C9-C10	-122.6(3)	C15-C16-C17-C13	-12.3(3)
C9-C10-C11-C12	-179.2(3)	C15-C16-C17-C19	169.3 (2)
C13-C14-C15-C16	-14.5(3)	C19-C18-C26-C27	-129.4(2)
C14-C15-C16-C17	16.1 (2)	C26-C27-C28-C29	-177.5 (3)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was partially supported by the Projects of the Natural Science Foundation of Jiangxi, China (grant No. 050017).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2066).

References

- Bruker (1997). *SMART* (Version 5.0), *SAINT* (Version 4.0) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Irie, M. (2000). Chem. Rev. 100, 1685-1716.
- Pu, S.-Z., Liu, G., Chen, B. & Wang, R.-J. (2005). Acta Cryst. C61, o599–o601.Pu, S.-Z., Yang, T.-S., Wang, R.-J. & Xu, J.-K. (2005). Acta Cryst. E61, o4077– 04079
- Pu, S.-Z., Zhang, F.-S., Sun, F., Wang, R.-J., Zhou, X.-H. & Chan, S.-K. (2003). Tetrahedron Lett. 44, 1011–1014.
- Ramamurthy, V. & Venkatesan, K. (1987). Chem. Rev. 87, 433-481.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shibata, K., Muto, K., Kobatake, S. & Irie, M. (2002). J. Phys. Chem. A, 106, 209–214.
- Tian, H. & Yang, S.-J. (2004). Chem. Soc. Rev. 33, 85-97.
- Yamaguchi, T. & Irie, M. (2006). J. Photochem. Photobiol. A, 178, 162-169.

Acta Cryst. (2007). E63, o2578 [doi:10.1107/S1600536807018909]

1,2-Bis[2-*n*-butyl-5-(2,2-dicyanovinyl)-3-thienyl]-3,3,4,4,5,5-hexafluorocyclopent-1-ene: a new photochromic diarylethene compound

C.-H. Zheng, S.-Z. Pu, Z.-G. Le, M.-B. Luo and D.-C. Huang

Comment

Photochromic diarylethenes have attracted considerable attention for their possible application in optical recording and photoswitches (Irie, 2000; Tian & Yang, 2004). For further background information, see Pu, Liu *et al.* (2005). In the present work, the title photochromic diarylethene, (Ia), was synthesized, and its structure is presented here. Previously, we have reported the structure of the 2-methyl, (II), and 2-ethyl analog, (III), of this compound (Pu *et al.*, 2003; Pu, Yang *et al.*, 2005). In order to investigate the substituent effect at the 2-position of the thiophene on the photochemical properties, we have now determined the structure of (Ia).

The molecular structure of (Ia) is shown in Fig. 2. In the cyclopent-1-ene ring, the C13—C17 bond is clearly a double bond, while the other bonds in the ring are clearly single bonds (Table 1). The two thiophene rings are linked by the C13=C17 double bond. The two *n*-butyl groups are located on opposite sides of the double bond and are directed *trans* relative to the thiophene planes, as reflected in the torsion angles C3—C4—C9—C10 and C19—C18—C26—C27 (Table 1). The dihedral angle between the central cyclopent-1-ene ring and each adjacent thiophene ring are 57.9 (1)° for S1/C1—C4 and 51.2 (1)° for S2/C18—C21. The corresponding values in the methyl analog, (II), and that in the ethyl analog, (III), are 44.9° and 48.0 (2)°, respectively. This conformation leads to a C4—C18 separation of 3.475 (3) Å in (Ia) [compared with 3.589 Å in (II) and 3.642 (7) in (III)]. This distance is short enough, theoretically, for a ring-closure reaction to take place in the crystalline phase to generate compound (Ib) (see scheme), (Ramamurthy &Venkatesan, 1987; Shibata *et al.*, 2002; Yamaguchi & Irie, 2006).

Crystals of (Ia) show photochromism in accordance with the expected ring closure, to form (Ib). Upon irradiation with 365 nm light, the colorless single crystals of (Ia) turned green quickly. When the green crystal was dissolved in dichloromethane, the solution also showed a green color, with an absorption maximum at 772 nm, consistent with the presence of the closed-ring isomer, (Ib). Upon irradiation with visible light with wavelength greater than 510 nm, the green crystal can return to its initial colorless state, and the absorption spectrum of the dichloromethane solution containing the colorless crystal is the same as that of solution of the open-ring form, (Ia), with the absorption maximum at 366 nm.

Experimental

The title compound, (Ia), was synthesized in 29% total yield by the literature method (Pu, Yang *et al.*, 2005) using 5-*n*-butyl-thiophene- 2-carbaldehyde as the start material. Crystal suitable for X-ray analysis were grown from a solution (diethyl ether/hexane 1/3) by slow evaporation at room temperature (m.p. 403 K).

Refinement

All H atoms were placed in calculated positions, with C—H distances of 0.93 Å (aromatic), 0.97 Å (CH₂) and 0.96 Å (CH₃). They were included in the refinement in the riding model approximation with isotropic displacement parameters set equal to $1.2U_{eq}$ of the carrier atom for the aromatic_H, and $1.5U_{eq}$ of the carrier for CH₃.

Figures

Fig. 1. The photochromism scheme of the title compound.

Fig. 2. The structure of compound (Ia) with 35% probability ellipsoids, showing the atomic numbering scheme.

1,2-Bis[5-(2,2-dicyanovinyl)-2-n-butyl-3-thienyl]-3,3,4,4,5,5- hexafluorocyclopent-1-ene

Crystal data	
$C_{29}H_{22}F_6N_4S_2$	$D_{\rm x} = 1.363 \ {\rm Mg \ m}^{-3}$
$M_r = 604.63$	Melting point: 403 K
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 20.8617 (17) Å	Cell parameters from 4441 reflections
<i>b</i> = 8.9036 (7) Å	$\theta = 2.3 - 21.4^{\circ}$
c = 31.734 (3) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 91.801 \ (10)^{\circ}$	T = 291 (2) K
$V = 5891.4 (8) \text{ Å}^3$	Block, yellow
Z = 8	$0.41 \times 0.25 \times 0.17 \text{ mm}$
$F_{000} = 2480$	

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer	5473 independent reflections
Radiation source: fine-focus sealed tube	3854 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -25 \rightarrow 25$
$T_{\min} = 0.907, \ T_{\max} = 0.960$	$k = -10 \rightarrow 10$

21870 measured reflections

 $l = -38 \rightarrow 37$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.046P)^2 + 3.9867P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.042$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.109$	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.01	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
5473 reflections	Extinction correction: none
372 parameters	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	
Hydrogen site location: inferred from neighbouring sites	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.34614 (3)	0.94519 (7)	0.065367 (18)	0.05087 (18)
S2	0.14181 (3)	0.60393 (7)	0.140966 (18)	0.04928 (17)
F1	0.42234 (9)	0.9638 (2)	0.21678 (5)	0.1019 (7)
F2	0.45948 (7)	0.7450 (3)	0.20272 (5)	0.0980 (6)
F3	0.40242 (8)	0.8486 (2)	0.28890 (5)	0.0826 (5)
F4	0.40837 (8)	0.62479 (19)	0.26488 (5)	0.0826 (5)
F5	0.28255 (7)	0.86621 (19)	0.27031 (4)	0.0741 (5)
F6	0.28808 (8)	0.62501 (19)	0.26922 (4)	0.0763 (5)
N1	0.51996 (15)	0.6334 (3)	-0.04852 (9)	0.0993 (9)
N2	0.39603 (15)	1.0267 (4)	-0.03025 (8)	0.0936 (9)
N3	-0.00732 (13)	0.5521 (4)	0.11051 (9)	0.0982 (9)
N4	-0.10277 (13)	0.8596 (4)	0.19571 (10)	0.1049 (10)
C1	0.40108 (11)	0.8007 (3)	0.07207 (7)	0.0466 (6)
C2	0.40147 (11)	0.7500 (3)	0.11275 (7)	0.0478 (6)
H2	0.4282	0.6732	0.1226	0.057*

C3	0.35760 (10)	0.8250 (3)	0.13843 (7)	0.0430 (5)
C4	0.32340 (10)	0.9344 (3)	0.11691 (7)	0.0441 (5)
C5	0.44063 (11)	0.7407 (3)	0.04009 (7)	0.0540 (6)
Н5	0.4642	0.6560	0.0480	0.065*
C6	0.44910 (12)	0.7877 (3)	0.00030 (8)	0.0553 (6)
C7	0.48911 (15)	0.7033 (3)	-0.02698 (9)	0.0710 (8)
C8	0.41933 (14)	0.9200 (4)	-0.01715 (8)	0.0641 (7)
С9	0.27335 (11)	1.0394 (3)	0.13239 (7)	0.0502 (6)
H9A	0.2893	1.1414	0.1304	0.060*
H9B	0.2666	1.0185	0.1619	0.060*
C10	0.20903 (11)	1.0292 (3)	0.10836(7)	0.0565 (6)
H10A	0.2155	1.0516	0.0789	0.068*
H10B	0.1933	0.9270	0.1100	0.068*
C11	0.15891 (13)	1.1340 (4)	0.12458 (10)	0.0752 (8)
H11A	0.1532	1.1124	0.1542	0.090*
H11B	0.1748	1.2361	0.1226	0.090*
C12	0.09494 (14)	1.1258 (4)	0.10217 (11)	0.1019 (12)
H12A	0.0998	1.1470	0.0728	0.153*
H12B	0.0666	1.1982	0.1140	0.153*
H12C	0.0774	1.0269	0.1053	0.153*
C13	0.35057 (10)	0.7935 (2)	0.18383 (7)	0.0421 (5)
C14	0.40648 (12)	0.8170 (3)	0.21406 (7)	0.0543 (6)
C15	0.38374 (12)	0.7624 (3)	0.25679 (7)	0.0521 (6)
C16	0.31102 (11)	0.7497 (3)	0.25091 (7)	0.0457 (5)
C17	0.29797 (10)	0.7518 (2)	0.20414 (6)	0.0399 (5)
C18	0.22207 (10)	0.6157 (2)	0.15356 (6)	0.0418 (5)
C19	0.23383 (10)	0.7151 (2)	0.18654 (6)	0.0404 (5)
C20	0.17678 (11)	0.7758 (3)	0.20215 (7)	0.0462 (6)
H20	0.1761	0.8417	0.2249	0.055*
C21	0.12248 (11)	0.7285 (3)	0.18066 (7)	0.0471 (6)
C22	0.05937 (11)	0.7794 (3)	0.18969 (8)	0.0541 (6)
H22	0.0572	0.8483	0.2116	0.065*
C23	0.00241 (11)	0.7422 (3)	0.17107 (8)	0.0552 (6)
C24	-0.00339 (12)	0.6364 (4)	0.13732 (9)	0.0655 (7)
C25	-0.05601 (14)	0.8085 (4)	0.18485 (9)	0.0718 (8)
C26	0.26755 (11)	0.5151 (3)	0.13119 (7)	0.0479 (6)
H26A	0.2590	0.4119	0.1390	0.058*
H26B	0.3110	0.5387	0.1408	0.058*
C27	0.26367 (12)	0.5275 (3)	0.08337 (7)	0.0570 (6)
H27A	0.2200	0.5077	0.0736	0.068*
H27B	0.2744	0.6293	0.0753	0.068*
C28	0.30844 (15)	0.4190 (3)	0.06202 (8)	0.0733 (8)
H28A	0.3518	0.4358	0.0728	0.088*
H28B	0.2965	0.3171	0.0693	0.088*
C29	0.30730 (18)	0.4343 (5)	0.01458 (9)	0.1064 (13)
H29A	0.2647	0.4148	0.0035	0.160*
H29B	0.3366	0.3634	0.0030	0.160*
H29C	0.3198	0.5343	0.0071	0.160*

	<u>م</u>	
<i>Atomic displacement parameters</i>	(A^2))

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0526 (4)	0.0588 (4)	0.0414 (3)	0.0081 (3)	0.0049 (3)	0.0056 (3)
S2	0.0442 (3)	0.0554 (4)	0.0481 (3)	-0.0065 (3)	-0.0014 (3)	-0.0082(3)
F1	0.1225 (16)	0.0941 (14)	0.0867 (12)	-0.0608 (12)	-0.0356 (11)	0.0229 (10)
F2	0.0430 (9)	0.185 (2)	0.0652 (10)	0.0228 (11)	-0.0041 (7)	0.0040 (11)
F3	0.0709 (11)	0.1161 (14)	0.0602 (9)	-0.0181 (10)	-0.0103 (8)	-0.0263 (9)
F4	0.0750 (11)	0.0842 (12)	0.0885 (11)	0.0232 (9)	0.0001 (9)	0.0244 (9)
F5	0.0682 (10)	0.0998 (12)	0.0539 (9)	0.0237 (9)	-0.0059 (7)	-0.0243 (8)
F6	0.0842 (11)	0.0892 (12)	0.0547 (9)	-0.0293 (9)	-0.0103 (8)	0.0258 (8)
N1	0.109 (2)	0.101 (2)	0.090 (2)	0.0179 (18)	0.0436 (18)	-0.0081 (17)
N2	0.110 (2)	0.101 (2)	0.0704 (17)	0.0258 (19)	0.0174 (15)	0.0171 (16)
N3	0.0700 (18)	0.124 (3)	0.101 (2)	-0.0288 (17)	-0.0049 (15)	-0.0350 (19)
N4	0.0583 (17)	0.139 (3)	0.118 (2)	0.0177 (18)	0.0008 (16)	-0.018 (2)
C1	0.0423 (13)	0.0531 (14)	0.0447 (13)	-0.0005 (11)	0.0036 (10)	-0.0010 (11)
C2	0.0414 (13)	0.0498 (14)	0.0522 (14)	0.0042 (11)	0.0024 (11)	0.0033 (11)
C3	0.0385 (12)	0.0487 (13)	0.0417 (12)	-0.0049 (10)	0.0002 (10)	0.0014 (10)
C4	0.0413 (12)	0.0479 (13)	0.0432 (12)	0.0002 (10)	0.0015 (10)	0.0014 (10)
C5	0.0477 (14)	0.0600 (16)	0.0548 (15)	0.0027 (12)	0.0059 (11)	-0.0040 (12)
C6	0.0505 (15)	0.0651 (17)	0.0509 (15)	-0.0013 (13)	0.0107 (12)	-0.0076 (13)
C7	0.0716 (19)	0.078 (2)	0.0648 (17)	0.0029 (16)	0.0234 (15)	-0.0023 (15)
C8	0.0659 (18)	0.080 (2)	0.0469 (15)	0.0015 (16)	0.0151 (13)	-0.0006 (14)
С9	0.0534 (15)	0.0513 (14)	0.0459 (13)	0.0057 (12)	0.0026 (11)	0.0009 (11)
C10	0.0506 (15)	0.0700 (17)	0.0489 (14)	0.0081 (13)	-0.0001 (11)	-0.0022 (12)
C11	0.0549 (17)	0.084 (2)	0.086 (2)	0.0157 (15)	-0.0056 (15)	-0.0149 (17)
C12	0.059 (2)	0.138 (3)	0.108 (3)	0.025 (2)	-0.0073 (18)	-0.004 (2)
C13	0.0406 (13)	0.0443 (13)	0.0410 (12)	0.0017 (10)	-0.0036 (10)	0.0009 (10)
C14	0.0430 (14)	0.0665 (17)	0.0531 (15)	-0.0053 (13)	-0.0042 (11)	0.0030 (12)
C15	0.0550 (15)	0.0575 (16)	0.0431 (13)	0.0005 (12)	-0.0099 (11)	-0.0020 (11)
C16	0.0479 (14)	0.0505 (14)	0.0387 (12)	-0.0021 (11)	-0.0012 (10)	0.0006 (11)
C17	0.0393 (12)	0.0414 (12)	0.0388 (11)	-0.0003 (10)	-0.0019 (9)	-0.0009 (9)
C18	0.0437 (13)	0.0435 (13)	0.0382 (11)	-0.0035 (10)	0.0003 (10)	0.0013 (10)
C19	0.0410 (12)	0.0442 (13)	0.0361 (11)	-0.0020 (10)	0.0000 (9)	0.0012 (9)
C20	0.0449 (13)	0.0514 (14)	0.0424 (12)	-0.0058 (11)	0.0030 (10)	-0.0074 (10)
C21	0.0419 (13)	0.0516 (14)	0.0480 (13)	-0.0038 (11)	0.0039 (10)	-0.0050 (11)
C22	0.0488 (15)	0.0588 (16)	0.0548 (14)	-0.0026 (12)	0.0031 (11)	-0.0063 (12)
C23	0.0419 (14)	0.0617 (16)	0.0621 (16)	-0.0050 (12)	0.0022 (12)	0.0007 (13)
C24	0.0413 (15)	0.084 (2)	0.0705 (18)	-0.0159 (14)	-0.0027 (13)	-0.0030 (16)
C25	0.0457 (16)	0.091 (2)	0.079 (2)	0.0015 (16)	-0.0016 (14)	-0.0063 (17)
C26	0.0490 (14)	0.0460 (14)	0.0488 (13)	-0.0002 (11)	0.0010 (11)	-0.0024 (11)
C27	0.0535 (15)	0.0689 (17)	0.0487 (14)	-0.0014 (13)	0.0015 (11)	-0.0082 (12)
C28	0.078 (2)	0.085 (2)	0.0579 (17)	0.0066 (16)	0.0129 (14)	-0.0123 (15)
C29	0.113 (3)	0.146 (4)	0.062 (2)	0.007 (3)	0.0155 (19)	-0.024 (2)
Geometric parameters (Å, °)						

S1—C4 1.720 (2) C11—H11B 0.9700

<u>61</u> <u>61</u>	1 722 (2)		0.000
	1.732 (2)	CI2—HI2A	0.9600
S2	1.712 (2)	С12—Н12В	0.9600
S2—C21	1.736 (2)	C12—H12C	0.9600
F1—C14	1.350 (3)		1.342 (3)
F2	1.337 (3)	C13C14	1.501 (3)
F3—C15	1.324 (3)	C14—C15	1.530 (3)
F4—C15	1.350 (3)		1.527 (3)
F5—C16	1.353 (3)	C16—C17	1.501 (3)
F6—C16	1.348 (3)	C17—C19	1.470 (3)
NI—C7	1.139 (3)	C18—C19	1.387 (3)
N2—C8	1.140 (4)	C18—C26	1.499 (3)
N3—C24	1.136 (3)	C19—C20	1.411 (3)
N4—C25	1.139 (3)	C20—C21	1.370 (3)
C1—C2	1.367 (3)	C20—H20	0.9300
C1—C5	1.431 (3)	C21—C22	1.430 (3)
C2—C3	1.412 (3)	C22—C23	1.352 (3)
С2—Н2	0.9300	С22—Н22	0.9300
C3—C4	1.376 (3)	C23—C24	1.429 (4)
C3—C13	1.480 (3)	C23—C25	1.435 (4)
C4—C9	1.496 (3)	C26—C27	1.521 (3)
C5—C6	1.347 (3)	С26—Н26А	0.9700
С5—Н5	0.9300	C26—H26B	0.9700
C6—C7	1.434 (4)	C27—C28	1.518 (3)
C6—C8	1.434 (4)	С27—Н27А	0.9700
C9—C10	1.525 (3)	С27—Н27В	0.9700
С9—Н9А	0.9700	C28—C29	1.511 (4)
С9—Н9В	0.9700	C28—H28A	0.9700
C10-C11	1.504 (3)	C28—H28B	0.9700
C10—H10A	0.9700	С29—Н29А	0.9600
C10—H10B	0.9700	С29—Н29В	0.9600
C11—C12	1.494 (4)	С29—Н29С	0.9600
C11—H11A	0.9700		
C4—S1—C1	92.46 (11)	F4—C15—C16	109.1 (2)
C18—S2—C21	92.25 (11)	F3—C15—C14	113.9 (2)
C2—C1—C5	124.0 (2)	F4—C15—C14	109.3 (2)
C2—C1—S1	110.21 (17)	C16—C15—C14	104.47 (18)
C5—C1—S1	125.75 (18)	F6—C16—F5	105.58 (18)
C1—C2—C3	113.8 (2)	F6—C16—C17	112.39 (18)
C1—C2—H2	123.1	F5-C16-C17	111.82 (18)
С3—С2—Н2	123.1	F6—C16—C15	111.92 (19)
C4—C3—C2	112.6 (2)	F5-C16-C15	109.65 (19)
C4—C3—C13	123.5 (2)	C17—C16—C15	105.58 (18)
C2—C3—C13	123.9 (2)	C13—C17—C19	128.82 (19)
C3—C4—C9	129.5 (2)	C13—C17—C16	110.65 (19)
C3—C4—S1	110.93 (16)	C19—C17—C16	120.51 (19)
C9—C4—S1	119.58 (16)	C19—C18—C26	129.7 (2)
C6—C5—C1	130.1 (2)	C19—C18—S2	111.33 (16)
С6—С5—Н5	115.0	C26—C18—S2	118.78 (16)
C1—C5—H5	115.0	C18—C19—C20	112.23 (19)
			- ()

C5—C6—C7	119.9 (3)	C18—C19—C17	124.45 (19)
C5—C6—C8	123.3 (2)	C20—C19—C17	123.30 (19)
C7—C6—C8	116.8 (2)	C21—C20—C19	113.6 (2)
N1—C7—C6	178.4 (3)	C21—C20—H20	123.2
N2—C8—C6	178.5 (3)	С19—С20—Н20	123.2
C4—C9—C10	114.3 (2)	C20—C21—C22	123.7 (2)
С4—С9—Н9А	108.7	C20—C21—S2	110.51 (17)
С10—С9—Н9А	108.7	C22—C21—S2	125.76 (18)
С4—С9—Н9В	108.7	C23—C22—C21	129.6 (2)
С10—С9—Н9В	108.7	С23—С22—Н22	115.2
Н9А—С9—Н9В	107.6	C21—C22—H22	115.2
C11—C10—C9	113.7 (2)	C22—C23—C24	122.8 (2)
C11—C10—H10A	108.8	C22—C23—C25	120.6 (2)
С9—С10—Н10А	108.8	C24—C23—C25	116.6 (2)
C11—C10—H10B	108.8	N3—C24—C23	179.3 (3)
C9—C10—H10B	108.8	N4—C25—C23	179.2 (4)
H10A—C10—H10B	107.7	C18—C26—C27	114.51 (19)
C12—C11—C10	115.3 (3)	С18—С26—Н26А	108.6
C12—C11—H11A	108.5	C27—C26—H26A	108.6
C10-C11-H11A	108.5	С18—С26—Н26В	108.6
C12—C11—H11B	108.5	С27—С26—Н26В	108.6
C10—C11—H11B	108.5	H26A—C26—H26B	107.6
H11A—C11—H11B	107.5	C28—C27—C26	112.7 (2)
C11—C12—H12A	109.5	С28—С27—Н27А	109.1
C11—C12—H12B	109.5	C26—C27—H27A	109.1
H12A—C12—H12B	109.5	С28—С27—Н27В	109.1
C11—C12—H12C	109.5	С26—С27—Н27В	109.1
H12A—C12—H12C	109.5	H27A—C27—H27B	107.8
H12B—C12—H12C	109.5	C29—C28—C27	113.4 (3)
C17—C13—C3	128.9 (2)	C29—C28—H28A	108.9
C17—C13—C14	111.24 (19)	С27—С28—Н28А	108.9
C3—C13—C14	119.80 (19)	С29—С28—Н28В	108.9
F2—C14—F1	106.2 (2)	С27—С28—Н28В	108.9
F2-C14-C13	113.2 (2)	H28A—C28—H28B	107.7
F1-C14-C13	111.1 (2)	С28—С29—Н29А	109.5
F2-C14-C15	111.6 (2)	С28—С29—Н29В	109.5
F1—C14—C15	109.5 (2)	H29A—C29—H29B	109.5
C13—C14—C15	105.40 (19)	С28—С29—Н29С	109.5
F3—C15—F4	106.16 (19)	H29A—C29—H29C	109.5
F3—C15—C16	113.8 (2)	H29B—C29—H29C	109.5
C4—S1—C1—C2	-0.82 (19)	F3—C15—C16—F5	20.4 (3)
C4—S1—C1—C5	178.9 (2)	F4—C15—C16—F5	138.75 (19)
C5—C1—C2—C3	-179.1 (2)	C14—C15—C16—F5	-104.5 (2)
S1—C1—C2—C3	0.6 (3)	F3—C15—C16—C17	141.0 (2)
C1—C2—C3—C13	-178.1 (2)	F4	-100.6 (2)
C2—C3—C4—C9	-179.3 (2)	C14—C15—C16—C17	16.1 (2)
C13—C3—C4—C9	-1.2 (4)	C3—C13—C17—C19	4.9 (4)
C2—C3—C4—S1	-0.6 (2)	C14—C13—C17—C19	-178.8 (2)
C13—C3—C4—S1	177.43 (17)	C3—C13—C17—C16	-173.4 (2)

0.81 (18)	C14—C13—C17—C16	2.9 (3)
179.64 (19)	F6-C16-C17-C13	-134.6 (2)
-173.6 (3)	F5-C16-C17-C13	106.9 (2)
6.8 (4)	C15-C16-C17-C13	-12.3 (3)
-176.5 (3)	F6-C16-C17-C19	47.0 (3)
2.9 (4)	F5-C16-C17-C19	-71.6 (3)
-122.6 (3)	C15—C16—C17—C19	169.3 (2)
58.8 (3)	C21—S2—C18—C19	-1.47 (17)
179.3 (2)	C21—S2—C18—C26	174.30 (18)
-179.2 (3)	C26-C18-C19-C20	-172.8 (2)
59.4 (3)	S2-C18-C19-C20	2.4 (2)
-122.8 (3)	C26-C18-C19-C17	5.9 (4)
-116.6 (3)	S2-C18-C19-C17	-178.88 (17)
61.2 (3)	C13—C17—C19—C18	50.1 (3)
129.9 (2)	C16-C17-C19-C18	-131.8 (2)
-53.5 (3)	C13—C17—C19—C20	-131.3 (3)
-110.8 (2)	C16—C17—C19—C20	46.8 (3)
65.8 (3)	C18—C19—C20—C21	-2.3 (3)
7.6 (3)	C17—C19—C20—C21	179.0 (2)
-175.7 (2)	C19—C20—C21—C22	-177.5 (2)
97.4 (3)	C19—C20—C21—S2	1.1 (3)
-19.8 (3)	C18—S2—C21—C20	0.19 (19)
-139.3 (2)	C18—S2—C21—C22	178.8 (2)
-21.1 (3)	C20-C21-C22-C23	179.9 (3)
-138.4 (2)	S2—C21—C22—C23	1.5 (4)
102.1 (2)	C21—C22—C23—C24	1.0 (4)
-137.8 (2)	C21—C22—C23—C25	-179.2 (3)
105.0 (2)	C19—C18—C26—C27	-129.4 (2)
-14.5 (3)	S2-C18-C26-C27	55.7 (3)
-96.4 (2)	C18—C26—C27—C28	-177.5 (2)
21.9 (3)	C26—C27—C28—C29	-177.5 (3)
138.7 (2)		
	0.81 (18) 179.64 (19) -173.6 (3) 6.8 (4) -176.5 (3) 2.9 (4) -122.6 (3) 58.8 (3) 179.3 (2) -179.2 (3) 59.4 (3) -122.8 (3) -1122.8 (3) -1122.8 (3) -122.8 (3) -116.6 (3) 61.2 (3) 129.9 (2) -53.5 (3) -110.8 (2) 65.8 (3) 7.6 (3) -175.7 (2) 97.4 (3) -138.4 (2) 102.1 (2) -137.8 (2) 105.0 (2) -14.5 (3) -96.4 (2) 21.9 (3) 138.7 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Fig. 1

